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References to the main paper are in blue. Sec. 1 shows more comparisons with
other potential methods for projecting depth-varying content. Sec. 2 discusses
the limits of depth variation with our proposed setup. Sec. 3 visualizes the effects
of using a static element for étendue expansion in the projection of depth-varying
content. Sec. 4 provides a proof for the equivalent stereo resolution from Sec. 4.2.
Sec. 5 provides more details on the multilayer model we used to represent the
lens array. Sec. 6 discusses the slight amount of light redistribution with depth
when projecting depth-dependent content. Sec. 7, Sec. 8 and Sec. 9 describe the
details of our implementation, including our calibration processes.

Technology Programmability HW complexity Time-mult. Light eff.
LCD/DLP

[2, 23,32]
Low
(blur)

Low
(1 SLM) No Low

Laser scanning
[22, 29,30]

Low
(minimal blur)

Low
(scanning mirror) No High

Focus-tunable lens
[31]

Moderate
(crosstalk)

Moderate
(SLM+tun. lens) Yes Depends

Coded aperture
[12, 15,16]

Moderate
(conv. with aper.)

Low
(SLM+static ap.) No Low

Time-mult. coded ap.
[13, 18] High High

(2 SLMs) Yes Low

Holographic
[3, 6–8,19,20,27,28]

Moderate
(limited étendue)

Low
(SLM+laser) No High

Holo. + lens array
(ours, [4, 21] in NEDs) High Low

(Holo.+lens arr.) No High

Table 1: High-level comparison of different potential depth-varying projection systems.
A holographic approach with a lens array étendue-expander allows for depth-dependent
content to be programmed on a single SLM, without needing time multiplexing or light
loss. Thus, our work uses such a system to engineer a depth-varying projector.
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shared online.
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1 More comparisons of depth-varying projectors

More simulated comparisons between a holographic system and traditional ap-
proaches that could create a depth-varying projector are shown in Fig. 1. A holo-
graphic system with étendue expanded with a lens array outperforms a coded
aperture projector, a high-speed projector focused at two depths with a focus-
tunable lens, a naive holographic projector rescaled to the same field-of-view,
and a similar holographic system with a random phase étendue expander.

In Fig. 2, we show more sophisticated projection systems. In Fig. 2(a), we
show a modified version of a focus-tunable lens and high-speed projector system,
where the patterns projected for each focal length are jointly optimized to match
the target images. This slightly improves the projection quality, but performance
still does not match the case of a holographic system with étendue expanded by
a lens array. In Fig. 2(b), (c), and (d), we explore time-multiplexed versions of
coded aperture projectors [18] and holographic systems. Time-multiplexing sig-
nificantly improves the performance of a coded aperture approach as illustrated
in Fig. 2(b). The improvement is less pronounced for holographic systems as
shown in Fig. 2(c) and (d) — we attribute this to limited étendue even after ex-
pansion. While time multiplexing is a useful tool, as discussed in Sec. 1, it can be
impractical in real applications thanks to increased bandwidth requirements and
decreased framerates. Furthermore, a time-multiplexed coded aperture requires
an additional SLM, increasing form factor and cost. Like standard coded aper-
ture, projected patterns will also be much darker than a holographic approach
thanks to the requisite blocking of light.

These various systems are summarized in Tab. 1. Our system does not require
time-multiplexing or complex hardware, but is able to project depth-dependent
content with a high level of programmability. It also inherits the light efficiency
of holographic projectors [6–8,28].
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Fig. 1: More simulated comparisons of depth-varying projectors. Like Fig. 2,
unique content is projected to two planes. Coded aperture projectors [12] (a), focus-
tunable lens/high-speed projectors [31] (b), and naive holographic projectors (c) strug-
gle with crosstalk. A holographic system with étendue expanded by a random phase
mask [17] performs well visually, but low frequency errors significantly decrease PSNR.
A holographic system with étendue expanded by a lens array provides the best results,
and we leverage such a setup for our real world prototype.
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Time-multiplexed (4×)

Fig. 2: More complex depth-varying projectors. (a) We show an optimized ver-
sion of a focus-tunable lens/high-speed projector, where the patterns projected for each
distance are jointly optimized. This increases performance over Fig. 1(b), but still does
not match Fig. 1(d). (b) We demonstrate a 4× time-multiplexed coded aperture pro-
jector [18], which significantly increases performance over the single aperture/display
pattern case. (c), (d) We demonstrate 4× time-multiplexed versions of a naive holo-
graphic system and an étendue-expanded version with the same field-of-view. Time
multiplexing mildly improves performance for these holographic systems. In general,
while time multiplexing is beneficial, there are practical challenges towards implemen-
tation, like increased bandwidth and lower framerates. Furthermore, time-multiplexed
coded aperture requires an additional SLM, and will be significantly darker than a
holographic approach thanks to the requisite light attenuation.
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Fig. 3: Simulation of different depth-varying projections. Some patterns can
be easier to resolve than other ones, like a rotating pattern [11].
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Fig. 4: Limits on depth variation. We tried forming unique content at three planes
separated 2.5mm apart before the projector lens. There is much more blur than a
similar scene in Fig. 6(e).

2 Limits of holographic depth variation

In general, some depth-varying patterns are easier to form than others on our
holographic system. As shown in Fig. 3, arbitrary content at different planes
can be more difficult than specially structured patterns, like a rotating plus.
Additionally, the closer together these planes are, the more difficult it is to
clearly disambiguate the content at each one, as visualized in Fig. 4. To explore
these limits, in Fig. 5, we project unique content at two planes as we vary the
distance between them. As we move these two planes closer together, it is harder
to find an SLM pattern that will project the correct content at both planes,
and instead an intermixing of the content arises. We note, however, that our
simulated setup has a somewhat higher depth resolution than our real setup.
This suggests that closing the simulation-to-real gap, perhaps using a neural-
augmented model [5, 9, 10, 14, 24, 26], could potentially improve the real depth
resolution.

3 Static elements and étendue expansion

As described in the main paper, the usage of static étendue-expanding optics
produces a structured defocus pattern thanks to the implicit spatial multiplex-
ing of the SLM performed by a high-resolution optic. This structured defocus
is illustrated in Fig. 6. Practically, when projecting natural images, this effect
reduces the contrast of depth variation when compared to a larger SLM with
equivalent étendue, as shown in Fig. 7.
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Fig. 5: Depth variation resolution visualization. We visualize the depth variation
of two planes receiving different content in simulation and on our real setup. As the
distance between the two planes decreases, the more the content intermixes and the
harder it is to visually separate. The distances shown are before the projection lens.



Holodepth: Holographic Depth-Varying Projection 7

P
la

ne
1 ← ←

P
la

ne
2

↓ ↓

(a) No expansion
(simulation)

(b) Expanded
(simulation)

(c) No expansion
(real)

(d) Expanded
(real)

Fig. 6: Structured defocus from a static étendue expander. We visualize the
defocus pattern created by a system with étendue expanded by a static element, like a
lens array [4, 21] or phase mask [1, 17]. While the defocus pattern stays the same size,
it becomes more structured, as shown by the faint lines that appear in (b) and (d).
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Fig. 7: Comparing depth variation of the étendue-expanded system with
larger SLMs. The structured defocus introduced by the static element reduces the
quality of depth variation. In our system, a lens array expands the étendue of a 8µm
pixel pitch SLM by 4.5×3.2, creating the same field-of-view as a 1.78µm×2.5 µm pitch
SLM. Ideally, for the same fixed field-of-view, the depth variation of a system with
étendue expanded by 4.5×3.2 should be similar to an SLM with 4.5×3.2 times the
pixels, e.g ., 1920×1200 → 5400×6144. However, its depth variation is more similar to
that of a SLM with 2700×3072 pixels.
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D = id tan θp
θp
id

Lens 2 Projector lens

D

(a) Holographic projector (b) One ray

D

(c) Equivalent stereo baseline

Fig. 8: Holographic depth variation resolution visualization. We can coarsely
estimate the effective resolution of our system using geometric optics approximations,
following a depth-from-defocus argument [25]. (a) shows the geometry of the holo-
graphic projector. For some point d away from the system, we can calculate its effective
aperture as D = id tan θp with 1

id
= 1

fp
− 1

d
and sin θp = δN

2f2
, where f2 is the focal

length of Lens 2, fp the focal length of the projector lens, δ is the SLM pixel pitch and
N is the number of SLM pixels along the largest dimension. As shown in (b), consider
the case where no light leaves the system except for the light ray that corresponds to
this maximum diffraction angle θp. Then, as illustrated in (c), the system is roughly
equivalent to a stereo system with baseline D.

4 Visualizing the depth resolution of a holographic
depth-varying pattern

Using system parameters and geometric optics approximations, we can approxi-
mately determine the resolution of our baseline-free holographic depth variation
cue, as illustrated in Fig. 8. First, we can compute the resolution of the wavefront
after Lens 2 with focal length f2 as λf2

δN , producing maximum diffraction angle
sin θp = δN

2f2
. This wavefront is then projected into the scene by a projection lens

with focal length fp. Then, for a point pd that is a distance d from this projection
lens, we can calculate the radius of the effective aperture from which this point
receives light as id tan θp, where 1

id
= 1

fp
− 1

d . Now, following a similar argument
to depth-from-defocus [25], consider the case where the depth-varying pattern
is selected to be a single light ray that intersects the perimeter of this effective
aperture at ad and passes through pd. This ray can be effectively replaced with
a single collimated laser source at ad (Fig. 8(c)). From this point-of-view, the
effective depth resolution of our system should be roughly equivalent to a stereo
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system with baseline id tan θp as described in Sec. 4.2 ("Depth cue compari-
son"). For example, for a point that is 0.5m away, the effective baseline should
be ≈9mm.

In general, this derivation ignores the holographic elements of our system
which could change its sensitivity. However, it provides a general guideline to-
wards the depth resolution of a holographic depth-varying projector.

5 A multilayer lens array model

The vast majority of recent work [1, 17, 21] proposes using a single thin-layer
model to represent static étendue-expanding optics, e.g ., Mthin(U) = Athin · U .
However, our lens array is not a thin element, and has a finite thickness. In our
work, we try to represent such elements with a more generic model composed
of a first modulation, a convolution, and a second modulation, e.g . Mours(U) =
A2 · Popt

zthickness
(A1 · U). Intuitively, these 3 components can be viewed as light

entering the array, light propagating within the array, and light exiting the array,
akin to the ABCD matrix model for thick lenses. Rather than trying to explicitly
define A1, Popt

zthickness
and A2, we optimize for them as part of the calibration in

Eq. (8), where the array is illuminated with many different patterns by the SLM
and a camera captures how the array manipulates these patterns. As shown
in Tab. 2, this generalized model better captures the effects of the lens array
than the thin element model over our validation set. We visualize the calibrated
parameters for both models in Fig. 10 and Fig. 11.

Model PSNR
Mthin(U) = Athin · U 30.28

Mours(U) = A2 · Popt
zthickness(A1 · U) 31.74

Table 2: Lens array model PSNR over validation set.

6 Light redistribution along depth

The light redistribution property of the Fourier relationship described in Sec. 3.1
describes “in-plane" redistribution — in other words, light from “off" pixels in the
same plane are redirected in (x, y) to “on" pixels. Propagating content to different
planes, as in our work, can also lead to another dimension of redistribution over
depth z. Intuitively, light used to form nearer points can also be used to form
farther points, and vice versa. This level of redistribution is determined by the
size of the sub-hologram cone, which is defined as the extent to which the light
from a single point can diffract [8]. The size of this cone can be calculated by:

L = d tan sin−1 λ

2δ
, (1)
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where d is the propagated distance, L is the radius of this cone at d, and δ is
the effective pitch (as determined by the SLM pixel size or étendue-expanded
resolution). The larger the difference in depth and the smaller the effective pitch,
the more drastic this depth-wise redistribution is.

We explore this experimentally on our setup in Fig. 9. We tried projecting
two non-overlapping patterns p1 and p2 in three different cases. First, we com-
bined both patterns into a single texture which we projected at a single depth
plane, once at z1 and once at z2. Then, we used Eq. (4) to find an SLM pattern
that would project p1 at z1 and p2 at z2. Theoretically, assuming an ideal sys-
tem, when the patterns are projected at unique planes, they should be brighter
than the corresponding regions in the combined texture thanks to this depth
redistribution. As can be seen in Fig. 9, while the effect is only slight thanks to
the small difference in depth between z1 and z2, this does hold on our prototype.
This increase could potentially lead to a larger effective range of a holographic
structured light system, especially for scenes with both close and far objects and
significant ambient light.
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Fig. 9: Light redistribution along depth. In addition to spatial light redistribu-
tion [6–8,28], our system also allows a degree of light redistribution along depth — light
used to form closer patterns can also be used to form farther patterns. To demonstrate
this, an overlayed ‘X’ and ‘O’ are projected at plane 1 in the top row of (a), and at
plane 2 in the bottom row. In (b), the ‘X’ is focused at plane 1, while the ‘O’ is focused
at plane 2. When projected at different planes, the ‘X’ and ‘O’ are slightly brighter
than when they are projected to the same plane. The two planes are separated by 1 cm
before the projection lens.

7 Calibration details

7.1 Calibrating the lens array

For calibration with Eq. (8), we projected content onto a blank white wall, which
we imaged with a camera. To map the captured images to the projected content,
we first projected Gray codes without the lens array in the system. Because the
extent of the projected pattern without the lens array should match to a central
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Fig. 10: Calibrated projector parameters. We visualize the learned modulations
from Eq. (8). Note that the central blue square in the phase for Aadd is due to a manual
cropping of the DC of the projected pattern.
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Fig. 11: Calibrated projector parameters with thin mask approximation. We
visualize the learned modulations from a version of Eq. (8) that approximates the lens
array with a thin phase mask: Mthin(U) = Athin · U . We observe that the magnitude
of solely Athin is not as distinct compared to the learned magnitudes of A1 and A2

in Fig. 10, and the phase of Athin is much noisier than that of A1.

rectangle of the system with the étendue-expanding optic, we can then calculate
a homography from the Gray codes mapping captured images to the étendue-
expanded projections.

With a mapping, we can now run the optimization process described in
Sec. 3.2. We manually cropped out a small neighborhood around the DC spot
to reduce its impact on the optimization following Chan et al . [6]. We first tried
taking two high resolution natural image datasets, and computing SLM pat-
terns for each image using the naive projector model given in Eq. (3). We then
captured the corresponding projector output, and ran the optimization given in
Eq. (8) with these pattern/capture pairs. However, we found that this resulted
in subpar performance — the model did not well replicate the real images, the
optimization was not able to recover the structure of the microlenses, and it did
not generalize well to new patterns.

We hypothesize that this unimpressive output was because the captured im-
ages had very little structure beyond hard-to-model, low-contrast speckle. To
address this issue, we observed that each lens in the lens array, when combined
with Lens 2 in Fig. 3, effectively formed an afocal relay system that mapped
content at the front focal plane of the lens array to the back focal plane of Lens
2. The combination of the n lenses in the lens array results in n overlayed relay
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systems at the back focal plane. Thus, if the lenses in the lens array have focal
length flens, we can create calibration images with more structure by instead
using Eq. (2) with a propagation distance of zarray − flens instead of Eq. 3. We
also augmented our dataset with sparse images, composed of randomly placed
letters and lines. With these modifications, after 500,000 iterations with a batch
size of 1, our optimization from Eq. (8) produced the masks shown in Fig. 10.
We also experimented with a thin-layer model Mthin(U) = Athin ·U , as discussed
in Sec. 5. As visualized in Fig. 11, the learned magnitude of Athin is much less
distinct than that of A1 and A2 in Fig. 10, and its phase is noisier than that of
A1.

7.2 Calibrating depth estimation

When recovering depth using Eq. (9), we need some ground-truth projected
pattern for every depth z considered for the desired depth resolution. An ideal
solution would be to use the model calibrated in Eq. (8), and simulate the
expected projected pattern for every depth z. However, in practice, there is a
fairly significant simulation-to-real gap when projecting content thanks to the
presence of speckle and blur, and as a result, directly using the simulated patterns
yielded suboptimal results.

To avoid these issues, we aim to robustly calibrate the depth-varying pat-
tern for every possible configuration of the projected patterns, where different
regions of the pattern may be projected to different planes. To start, our chosen
projected patterns consist of repeated ‘X’s and ‘O’s projected to different planes
zi and zj — we term each individual ‘X’ and ‘O’ as vx, where the depth-varying
pattern is centered about pixel x. For simplicity, we constrain the pixels in a
local neighborhood around each vx to the same planes zi and zj . For each indi-
vidual vx, we solve Eq. (4) for every possible configuration of planes zi, zj ,∀i, j.
We denote each computed pattern as px,(zi,zj), which we store in a dictionary
for later use. To synthesize a future pattern pn where each vx is projected to
depths (zix,n

, zjx,n
), we simply add the associated patterns together:

pn =
∑
x

px,(zix,n ,zjx,n ) (2)

Then, we aim to calibrate the response of every px,(zi,zj). To do so, we first
sum together all the patterns that correspond to depth planes zi, zj :

pcalib,(zi,zj) =
∑
x

px,(zi,zj). (3)

We then project each pcalib,(zi,zj), and capture images of the corresponding depth
pattern by sweeping a board through the scene, and capturing images at known
depths (we spaced out each capture by 0.635 cm after our projection lens). For
each x, we crop the surrounding neighborhood from these captures, and set it
as the real depth-varying pattern for px,(zi,zj) — we call this cx,(zi,zj).
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Now, let’s say we have some capture ip, captured with pattern pp where each
vx is projected to (zix,p

, zjx,p
). We synthesize a ground-truth projected pattern

cp by combining our cx,(zi,zj):

cp(x) = cx,(zix,p ,zjx,p )
, (4)

using which we solve Eq. (9) with. In summary, intuitively, we precomputed the
patterns for all the possible depths each vx can be projected to, using which
we can synthesize new patterns with. We then calibrate the real depth-varying
pattern for each of these possible vx’s, and then stitch up these calibrations into
a final “ground-truth" depth-varying pattern.

8 Software implementation details

Our code base is implemented in PyTorch — we share code samples at https://
github.com/dorianchan/holodepth. Minimizing Eq. (4) for two target planes
typically takes about 11 minutes for 2000 iterations on our NVIDIA RTX 3090.
For our loss function, we used an augmented version of mean-squared error:

L(G, I) =
1

N

∑
x

(s ·Π(G(x))− I(x))
2
, (5)

where G is the simulated output, I is the target, N is the number of pixels in
the image, s is a learnable scale term that is fixed for all images [24], and Π(·)
denotes an area downsampling that resizes G to the same resolution as I.

Inspired by Chao et al . [8], we also tried an energy-preserving version of Eq. (5):

Lenergy(G, I) =
1

N

∑
x

(
Π

(
1

SG
G(x)

)
− 1

SI
I(x)

)2

, (6)

where SG =
∑

x G(x) is the sum of the values in the simulated output and
SI =

∑
x I(x) is the sum of the values in the target. Intuitively, dividing by

SI and SG effectively normalizes I and G, with 1
SI

I(x) representing the ideal
energy-preserved signal. However, while we found that this worked well without
the lens array, with it sparse patterns typically became extremely blurred in the
real system, even though simulated results seemed reasonable. We attribute this
to miscalibration in the system that Eq. (5) typically avoids by not trying to
maximize light efficiency.

9 Implementation of other methods

For the experiments in Fig. 2, the front plane was at 0.4m and the back plane was
at 0.7m, while in Fig. 1 and Fig. 2 the front plane was at 0.5m. To determine
the parameters of a coded aperture system, we used the field-of-view of our
holographic system to estimate the focal length of a projection lens, given a

https://github.com/dorianchan/holodepth
https://github.com/dorianchan/holodepth
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typical 0.47 inch DMD chip. Calculating a focal length of roughly 50mm and
assuming an f-number of 1, we simulated an aperture with diameter 50mm.
We selected the in-focus plane to be the back plane of a target depth-varying
pattern, and modeled the pattern at the front plane with a convolution between
the in-focus pattern with the aperture pattern [12], both of which are grayscale.
We ran a gradient descent procedure to optimize both the display pattern and
the aperture pattern, minimizing mean-squared error. We ran the same process
for the time-multiplexed version in Fig. 2(b), except with multiple aperture and
display patterns.

For the focus-tunable lens system, we set the aperture to diameter 10mm
following Xu et al . [31]. For the optimized version described in Fig. 2(a), we ran
a gradient descent procedure to optimize the patterns displayed when the lens
is focused at the front or back planes, accounting for the resulting blur at the
other plane.
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