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Holospeed: High-Speed Holographic Displays
for Dynamic Content

Dorian Chan, Oliver Cossairt, Nathan Matsuda, and Grace Kuo

Abstract—Holographic displays are plagued by speckle — noise-like artifacts caused by the coherent interference of laser light. To
mitigate this challenge, state-of-the-art systems use time multiplexing on fast spatial light modulators (SLMs) to effectively temporally
smooth out these effects. In our work, we observe that such an approach struggles in practice in the context of dynamic content,
manifesting motion blur and stroboscopic artifacts thanks to a fundamental mismatch between expected and displayed motion. To
tackle this challenge, we propose a paradigm of holographic high-speed display, where we use the underlying fast SLM to reproduce
target content that changes at the same framerate. Approaches built using this paradigm mitigate motion blur and strobing, and
simultaneously minimize speckle and maximize contrast with the right loss functions. We demonstrate such a methodology in both
simulation and a real system.

Index Terms—Computational Display, Holography, Near-Eye Display, VR/AR
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1 INTRODUCTION

HOLOGRAPHIC displays have seen significant attention
in recent research. By illuminating a spatial light

modulator (SLM) with coherent laser light, these devices
are theoretically capable of providing accommodation cues
and glasses-free vision correction at high resolution. Ad-
ditionally, their potential compact form factor and light
efficiency make them an attractive choice for future aug-
mented/virtual reality (AR/VR) systems.

However, holographic displays are not without their
challenges. Chief among them is speckle — unavoidable
noise-like artifacts that dramatically reduce the perceived
quality of displayed 3D content. To this date, a number of
approaches have been proposed to tackle speckle, ranging
from algorithmic adjustments [1], [2], [3], [4] to more sophis-
ticated hardware systems [5], [6], [7], [8].

One particularly simple and effective solution is time
multiplexing. In short, if the utilized SLM has a sufficiently
high framerate, multiple patterns depicting the same scene
can be displayed during the human eye’s persistence-of-
vision time. These patterns are effectively averaged together
by the brain, minimizing speckle effects. To further improve
output quality, the displayed frames can be jointly optimized
as a whole, resulting in (i) improved contrast and (ii) further
despeckling. With the emergence of fast SLMs based on
digital-micromirror devices (DMDs), most state-of-the-art
holographic displays [9], [10], [11], [12], [13] now use such
jointly-optimized time multiplexing for despeckling.

However, this past research has focused on static scenes,
and inadequately explored dynamic content. Such a case is
a must in AR/VR, ranging from simple videos that are
streamed to the user, to world-locked virtual content that
moves as a user moves. In our work, we demonstrate that
users in practice may experience various visual artifacts
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with dynamic scenes on time-multiplexed holographic dis-
plays, once they are integrated into AR/VR systems.

For example, motion blur is a major challenge in time-
multiplexed displays. As we’ll discuss, time multiplexing
behaves like a high-persistence display which creates blur in
the presence of eye motion. For example, as the eye rotates
to track a moving object, the display continues to multiplex
the “moving” object at its original location, resulting in
smearing on the retina that visually appears as blur.

To avoid such problems, most modern commercial
AR/VR architectures rely on low-persistence displays
where displayed content is merely flashed on for a short
duration (about 10% of the frame time) every frame [14].
While an effective solution for traditional displays, this
modality poses a dilemma for holographic displays. For
a given high-framerate SLM, a shorter persistence time
equates to fewer frames for temporal multiplexing, resulting
in poor image quality but reduced motion blur. Using a
longer persistence time would permit more frames for time-
multiplexing, resulting in diminished speckle but increased
blur. If the number of temporally multiplexed frames is
maximized, as described in prior state-of-the-art work on
holographic displays, then the user will see about 10× more
motion blur compared to commercial VR displays.

In addition, we’ll show that holographic displays, like
most display architectures, are susceptible to stroboscopic ar-
tifacts. Strobing describes when phantom copies of moving
objects appear, which can happen if object motion does not
match eye motion. Such effects are distracting and nausea-
inducing for current AR/VR headset users [14], [15].

In this work, we explore how to effectively despeckle
dynamic content using a fast SLM without inducing motion
blur or strobing. In particular, we treat a holographic system
with a fast SLM as a high-speed display, that is capable of
displaying unique, albeit speckled frames at extremely high
rates — rather than a fast display that merely replicates the
same slow image in traditional time multiplexing. Under
this paradigm, with priors on eye motion and principled
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Fig. 1. Holographic time-multiplexing and motion (simulation). When observing dynamic content, holographic time-multiplexed displays
manifest distracting visual artifacts. For example, the human eye often instinctively tracks moving objects such that they remain visually sharp
(a). However, traditional time-multiplexing approaches for despeckling computer-generated holograms result in motion blur, as well as significant
speckle (b). Conversely, if the eye remains static, we expect a motion-blurred image (e). However, traditional time-multiplexing produces distracting
stroboscopic effects (f). Using a different paradigm of high-speed display mitigates both the blur as well as the strobing — however, naive application
still results in noticeable speckle and loss of contrast (c), (g). By properly accounting for persistence-of-vision and eye motion, contrast can be
preserved and speckle mitigated (d), (h).

loss functions for hologram optimization, we can use such a
display to reproduce visually correct output without motion
blur or strobing, while preserving the improved contrast
and despeckling of traditional joint multiplexing. Given
that 1800Hz displays may be required for lifelike experi-
ences [16], we believe that fundamentally displaying faster
content will reap benefits for visual realism.

Before we begin, we note that our work is primarily a
theoretical one in which we rely on computational models of
human perception to evaluate the prominence of spatiotem-
poral artifacts, like motion blur and strobing. Full validation
of our approach would require a user study, ideally with
wide field-of-view, world-locked content in a head-mounted
display, similar to AR/VR scenarios. Unfortunately, while
these are areas of active research [17], [18], [19], [20],
[21], [22], current holographic display prototypes lack the
necessary computational speed, form factor, and étendue
to support meaningful application under these conditions.
However, motion blur and stroboscopic effects are well
understood in the context of traditional AR/VR displays
[14], validating our computational models of perception and
demonstrating the importance of this research area.

Given that the ultimate goal of holographic display
research is to show virtual content indistinguishable from
the real world, we hope our findings will help inform future
holographic architectures to be designed with motion arti-
facts in mind. In summary, our contributions are as follows:

• We show that standard time multiplexing produces
motion blur and strobing artifacts in dynamic content.

• We propose a paradigm of high-speed holographic
display to tackle motion blur and strobing effects.

• We propose novel loss functions for high-speed display
that properly account for persistence-of-vision and eye
motion, preserving contrast and minimizing speckle.

• We explore how such a framework can be applied to
real AR/VR systems while minimizing latency.

• We validate our methodologies in both simulation and
a real setup on focal stack videos.

2 RELATED WORK

Speckle is a fundamental challenge for holographic displays
because coherent laser light is used to replicate incoherent
human-facing content. To mitigate this speckle, one line
of work proposes using partially coherent light sources
in holographic displays, such as LEDs [6], [7], [23], laser
grids [5], [24], [25] and comb lasers [8]. While effective,
such methodologies introduce extra hardware complexity
and cost. On the algorithmic end, one class of techniques
attempts to reduce speckle by producing smooth phase
holograms [1], [2], [20], [26], [27], such that image points
always constructively interfere. However, such techniques
produce unrealistic blur that does not drive accommoda-
tion [13]. Other approaches attempt to hide speckle noise
according to the spatial sensitivity of the eye [3], [4], but
such approaches may require careful retinal modeling.

More relevant to this work, many approaches leverage
fast SLMs and time multiplexing to minimize speckle. In
general, most past work has focused on producing differ-
ently speckled versions of the target image [9], [10], [11],
[12], [13], [28], [29], [30]. Another line of work proposes
splitting an image into disjoint sets of sparse points, each
of which is independently displayed by a separate SLM pat-
tern [31], [32]. However, no past research has explored the
motion artifacts that result from time multiplexing, and how
the underlying fast SLM could address them. Outside of
displays, a number of systems in the sciences have used fast
SLMs and computer-generated holography to create high-
speed content for various applications, such as structured
light [33], beam forming [34], [35], [36], optical tweezers [37],
[38], microscopy [39], nanomanufacturing [40], and aberra-
tion correction [41]. We believe we are the first to apply this
paradigm to human-facing holographic displays.

Outside of holography, a number of works have lever-
aged other traditionally time-multiplexed systems as dy-
namic high-speed displays. In one line of research, fast
DMDs are used to help replicate three-dimensional content
in the context of light-field [42], [43], [44] or multifocal
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displays [45]. Other works rely on such systems for fast
active vision [46], [47], or to help embed hidden information
into projected content [46], [48], [49]. We are not aware of
any past work that leverages these fast SLMs to mitigate the
motion artifacts of time multiplexing.

3 TIME-MULTIPLEXED HOLOGRAPHIC DISPLAYS
AND VISUAL QUALITY

Time-multiplexed displays assume that sequentially-
displayed SLM frames will be averaged together by the
brain into a single frame, thanks to persistence-of-vision. Let
NTM be the number of SLM frames available to be displayed
for some target frame Itarget, and τSLM the SLM frametime;
without loss of generality, we assume that the duration of
persistence-of-vision matches NTM. Then, after NTM frames
are displayed, the perceived image can be expressed as:

PTM{ϕ} =
NTM∑
i=0

M{ϕ[i]} (1)

where ϕ[i] denotes the ith SLM pattern and M{·} the
holographic forward model, e.g., the model from Choi et
al. [9] (see supplement for our model). For simplicity, let M
output a focal stack.

Then, to display some desired focal stack Itarget, a stan-
dard approach involves separately optimizing each individ-
ual SLM pattern to best reproduce the target focal stack
using random instantiations (we omit the scaling factor
required to normalize M{·}):

∀i,min
ϕ[i]

∥M{ϕ[i]} − Itarget∥2. (2)

While simple to implement and easily parallelizable [28],
such “independent” time multiplexing has two key limita-
tions. First, solving Equation (2) often results in biased out-
puts, i.e., multiple random instantiations do not, in expec-
tation, result in output matching Itarget. An illustrative sce-
nario is dark regions with zero brightness in the target scene
— every M{ϕ[i]} must produce a non-negative brightness
for these regions, and thus the cumulative brightness will
typically be greater than zero. As a result, Equation (2) typ-
ically results in reduced contrast, decreasing visual quality.
Furthermore, solving this expression produces roughly un-
correlated speckle between different frames. While effective
for despeckling over many patterns, convergence can be
poor under fewer frames.

To mitigate these effects, current state-of-the-art systems
leverage “joint” time multiplexing. Instead of indepen-
dently optimizing each frame, these approaches attempt to
match the perceived image over all displayed frames with
the ground truth:

min
ϕ

∥PTM{ϕ} − Itarget∥2. (3)

By optimizing all patterns simultaneously, speckle conver-
gence is improved and contrast errors can be reduced, e.g.,
a dark speckle in one frame can be compensated by a bright
speckle in another frame. In practice, the recovered ϕ∗[i] in
both Equation (2) and Equation (3) produce approximate
replicas of Itarget. Thus, we can write:

M{ϕ∗[i]} ≈ Itarget. (4)

3.1 Time-multiplexing and moving content
While effective for static scenes, these techniques face in-
herent challenges when applied to dynamic content. For
instance, under phenomena such as smooth pursuit or the
vestibulo-ocular reflex (VOR), the human eye continuously
rotates to track moving objects, in order to maintain a
stationary image on the retina — these physiological mecha-
nisms allow us to see fine details on moving objects (smooth
pursuit), or on stationary objects as we move (VOR).

To see why this might be a problem for holographic
time multiplexing, consider the case where the display aims
to reproduce some real object that does not remain static,
but continues to translate relative to the viewer over the
next NTM SLM frames. The user then rotates their eye to
track this motion, as visualized in Figure 2(a). Formally, let
T x{·} denote a 2D translation by x = (x, y). Then, the real
scene over time will be given by T xs(t){Itarget}, where xs(t)
represents the shift from object motion at time t. Modeling
eye rotation as a 2D translation of the perceived image, if
the user was actually viewing the real target the eye would
perceive:

Ireal =

∫
t
T xe(t)

{
T xs(t){Itarget}

}
dt, (5)

where xe(t) is the shift imposed by the eye. Assuming that
the eye perfectly tracks the scene, xe = −xs and therefore
T xe(t) and T xs(t) cancel out, leaving:

Ireal ≈ Itarget. (6)

In short, a user will ideally see a sharp image of the target
despite scene motion, as the eye moves to compensate for it.

However, a time-multiplexed holographic display is ag-
nostic to this motion, and will continue to display the
moving object at its original location M{ϕ∗[i]} ≈ Itarget
(Equation (4)), even as the eye rotates. Thus, the user would
actually perceive on such a system:

Iperceived ≈
NTM∑
i=0

T xe(ti){M{ϕ∗[i]}} ≈ B ∗ Itarget, (7)

where ti = τSLMi, and B denotes some blur kernel cor-
responding to the motion of the eye. In other words, a
time-multiplexed holographic display will result in a motion-
blurred version of the same image.

In incoherent displays, such a phenomenon is called
sample-and-hold blur, and is a known artifact of the persistence
of a display. In short, for a given framerate, persistence
refers to the proportion of the total frametime which a
display holds the desired pattern. Because time-multiplexed
holographic displays effectively show the same pattern over
NTM subframes, they behave as high-persistence displays,
and therefore suffer from the same motion artifacts.

To address these challenges, incoherent AR/VR systems
rely on low-persistence displays where desired content is
simply flashed on for a short duration [14]. However, in
holographic displays, such flashing would result in little
time multiplexing, as very few SLM frames could be shown
in such a short duration. More specifically, most headsets
today aim for less than 2ms of persistence [14]. On a
1 kHz SLM, this equates to two frames of holographic time-
multiplexing. Clearly, new approaches are needed to display
speckle-free dynamic content in holographic systems.
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(a) Sample-and-hold blur (b) Stroboscopic effects

Fig. 2. Visualizing sample-and-hold blur and stroboscopic effects. Consider a car moving to the right, displayed on a time-multiplexed
holographic display. If our eye fixates and tracks this car (a), it will continuously rotate following the expected location of the car. However, since the
display continues to show time-multiplexed versions of the car at its old location, our eye will perceive a motion-blurred version with persistence-of-
vision. Now, consider when the eye is fixed (b). Then, the car will be displayed at multiple discrete locations over time to our eye, creating ghosting
effects. Both of these artifacts reduce visual realism, and may induce visual discomfort [14], [15].

Additionally, like any other low-speed display, such
holographic displays also suffer from stroboscopic artifacts
when eye motion does not match an object’s motion. To see
when this might occur, consider when the eye is static while
the object translates as before (Figure 2(b)). In this case, the
user should ideally perceive a motion-blurred image:

Ireal =

∫
t
T xs(t){Itarget}dt = B ∗ Itarget. (8)

However, on a time-multiplexed holographic display, the
user would instead perceive a sharp image:

Iperceived ≈
NTM∑
i=0

M{ϕ∗[i]} ≈ Itarget, (9)

introducing another mismatch between real-world visuals
and actual time-multiplexed output. In the context of a
full video, where every consecutive non-overlapping set of
NTM frames produces a different target frame, Equation (9)
effectively produces a phantom array of identical sharp
objects, rather than smooth motion blur. For instance, in
the aforementioned case where the scene translates, the first
set of NTM frames would reproduce Itarget, while the next
set would reproduce the scene at its next shifted location
T xs(tNTM){Itarget}. If the displayed content is viewed be-
tween frames 0.5NTM and 1.5NTM, a user would simulta-
neously observe both the first and second target frame:

Iperceived ≈ 0.5
(
Itarget + T xs(tNTM){Itarget}

)
. (10)

In AR/VR settings, such stroboscopic effects become no-
ticeable with head motion over 5-10 degrees/second, far
below the speed of a leisurely head turn [14]. This results in
nausea and visual discomfort for the user [14], [15]. Along
with sample-and-hold blur, such artifacts may limit visual
realism in real-world holographic displays.

4 HIGH-SPEED HOLOGRAPHIC DISPLAYS

To tackle these unique challenges of dynamic scenes, we
observe that such blurring and strobing artifacts are fun-
damentally due to the low framerate of the underlying
target content. Intuitively, if we had a perfect display with
infinite framerate, we would be able to directly reproduce
any desired real-world scene, and therefore avoid any such
undesirable effects. Thus, in the context of time-multiplexed
holographic displays, we propose a paradigm of high-speed
display. In short, the SLMs used for holographic temporal
multiplexing actually display patterns at thousands of hertz.

Thus, a holographic display need not solely reproduce dif-
ferently speckled versions of the same low-speed frame with
each underlying high-speed SLM pattern — we can repro-
duce shifted versions, blurred versions, or altogether unique
content with every SLM pattern, as we fundamentally have
a modulator that produces high-speed frames.

A simple realization of this idea is to directly optimize
each ϕ[i] to reproduce the desired high-speed scene VHS(·)
at corresponding time ti:

∀i,min
ϕ[i]

∥M{ϕ[i]} − VHS(ti)∥2. (11)

We term such an approach independent high-speed display.
While effective in reducing sample-and-hold blur and stro-
boscopic effects, we observe in practice that analogous to
Equation (2), independent high-speed display results in
reduced contrast and poor speckle convergence as each
frame is optimized independently of the others. How then,
can we preserve contrast and improve speckle convergence,
without introducing blur or strobing like Equation (3)?

To mitigate these challenges, we formally model the
images perceived by a viewer under eye motion and
persistence-of-vision from high-speed content:

P{V,xe} = k ∗(t)
(
Txe ∗(x) V

)
, (12)

where Txe(x, t) = δ (x− xe(t)), k(t) represents the tempo-
ral kernel of interest thanks to persistence-of-vision, and ∗(x)
and ∗(t) denote convolutions over the spatial and temporal
dimensions, respectively. In words, the model shifts every
frame according to eye motion, and then blurs the input
video over time to model the temporal processing of the
eye [50], [51], [52], [53].

Then, an ideal holographic display should solve the
following optimization problem, matching the images per-
ceived from the SLM with the ideal perceived images from
the desired target sequence:

min
ϕ

∑
t∈T

∥P{M{ϕ},xe}(t)− P{VHS,xe}(t)∥2, (13)

where T denotes the set of timestamps for which input con-
tent is available — we assume every τstep for simplicity. We
call solving this expression motion-aware high-speed display.

Conventional joint time-multiplexing (Equation (3)) can
viewed as a special case of the above framework. First,
traditional joint multiplexing assumes that the eye remains
static as it views dynamic content, e.g., xe(t) is assumed to
remain constant. In contrast, Equation (13) explicitly models
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Without high-speed regularization:

Regularized
timestamps:

Perceived content:

τstep = NTMτSLM

With high-speed regularization:

Perceived content:
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Fig. 3. The impact of high-speed regularization. Traditional joint time
multiplexing regularizes the perceived image at only intermittent times,
e.g., every NTMτSLM. Thus, at other ”misaligned” points in time, the
perceived image can behave in undesirable ways. More speckle appears
(the sign), and when eye motion does not match an object’s motion,
strobing artifacts appear instead of natural motion blur (the plane).
When using high-speed regularization, because the perceived content
is optimized more frequently every τSLM, such artifacts disappear.

eye motion on top of persistence-of-vision, avoiding any po-
tential sample-and-hold blur while preserving the improved
contrast and speckle convergence of joint time multiplexing.

Second, in traditional multiplexing, every consecutive,
non-overlapping set of NTM frames is used to reproduce a
single desired image. In other words, it only optimizes the
perceived image at intermittent intervals τstep = NTMτSLM.
While the regularized images can be very high quality, the
perceived image at other timestamps, e.g., 0.5NTMτSLM can
again suffer from speckle as their outputs are no longer
constrained. Furthermore, such an approach can be prone
to stroboscopic effects as it still reproduces low-speed con-
tent. In contrast, our framework introduces a paradigm
of high-speed regularization, where the perceived image is
regularized much more frequently with high-speed content,
e.g., τstep = τSLM. This ensures that the perceived image
has low speckle at any point in time, and that any scene
motion that the eye does not follow gracefully degrades into
physically correct motion blur (see Figure 3). By producing
perceptually correct high-speed content, we can hopefully
increase visual quality.

Without considering content generation, our framework
does not, in theory, add significant computational expense
over traditional multiplexing — one iteration of gradient
descent on Equation (13) requires the same number of for-

ward and backward propagations through the holographic
forward model as Equation (3). In practice, there is some
additional computational expense from computing the per-
ceived image at more timestamps after holographic prop-
agation. However, given the convolutions required by co-
herent propagation [54] as well as the increasing complexity
of modern neural modeling [2], [9], [21], such linear factors
may become less significant with larger images and SLMs.

Finally, even if high-speed regularization is not used,
solving Equation (13) still produces a form of high-speed
display that mitigates sample-and-hold blur, as each SLM
pattern essentially produces a shifted version of the target
scene. Put another way, such an approach temporally up-
samples input content to the framerate of the SLM by shift-
ing it according to the expected eye motion. This inherent
high-speed display is what mitigates sample-and-hold blur.

To solve Equation (13), a direct approach would simulta-
neously optimize all to-be-displayed SLM frames, such that,
perceptually speaking, they jointly reproduce all desired
content at all timestamps. However, such an approach be-
comes less attractive for real-time, interactive settings where
output target frames are not known apriori. We discuss this
aspect in further detail in Section 4.2.

4.1 Modeling distributions of eye motion
Solving Equation (13) requires a specific eye motion xe(t).
Although a precise eye trajectory can, in theory, be obtained
using an eye tracker, in practice, it is more common to have
access to a distribution of possible eye movements rather
than a single deterministic path. For instance, eye tracker
output is often inaccurate or delayed, and thus probabilis-
tic modeling may be required [55]. If no eye tracking is
available, a distribution of eye motions could be estimated
directly from the target content if the eye is assumed to be
tracking objects in the scene [56]. For example, by comput-
ing optical flow over the input video, a distribution of eye
motion can be estimated by computing a histogram over
the scene flow. In the case where SLM frames need to be
precomputed for a desired video, such an approach may
be the only option available since exact eye motion is not
known apriori. Thus, handling distributions of eye motion
may need required in practice to leverage an approach like
Equation (13).

To address this need, we propose two approaches that
account for the distribution of possible eye motions. For
the short temporal window that contributes to the image
perceived at time t, we assume that the trajectory of the eye
xe(ti) can be linearly approximated by xm(ti) = c+m·(ti−
t), where m is drawn from a distribution with a probability
density function pm(m, t). Without loss of generality, we
can also safely set c to 0 without impacting any downstream
optimization. Then, with this probabilistic motion model in
hand, we first propose simply taking a weighted average of
Equation (13) over all possible eye motions and minimizing:∑
t∈T

∫
m
∥P{M{ϕ},xm}(t)− P{VHS,xm}(t)∥2pm(m, t) dm.

(14)

To avoid excessive computational expense per iteration if
there are many possible motions, inspired by stochastic
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gradient descent, we optimize a single m per iteration
sampled from pm(m, t). We label this approach stochastic
motion-aware holographic display.

While an effective solution, in compute-constrained sce-
narios, not enough optimization iterations may be possible
to sufficiently cover the space of potential motions. Thus, we
propose what we call kernel-based motion-aware holographic
display based on moving the integral over eye motions in
Equation (14) inside the norm:

min
ϕ

∑
t∈T

∥Pkernel{M{ϕ}}(t)− Pkernel{VHS}(t)∥2,

Pkernel{V } =

∫
m
P{V,xm}(t) · pm(m, t) dm.

(15)

Note that if the distribution of eye motions remains constant
over time, Pkernel{V } can be expressed as a convolution
K ∗(x,t) V for efficient computation. Intuitively, this method
can be viewed as computing and minimizing the ”aver-
age” speckle over all potential eye motions. In practice,
this approach can produce slight haloing especially when
used without high-speed regularization, as will be seen in
Section 5.1.

4.2 Motion-aware high-speed displays on-the-fly
In reality, dynamic content is generated on-the-fly in many
significant applications like AR/VR and teleconferencing. In
an ideal implementation of such systems, whenever target
frames arrive at the display, they should be shown as soon
as possible to minimize latency. How can we replicate such
a modality given the previously-described framework?

Without high-speed regularization, an input target ar-
rives every τstep = NTMτSLM. Let τl be the maximum allowed
latency — for simplicity, let τl = NTMτSLM. Thus, for every
input target frame Itarget, we directly solve the next set
of NTM frames to produce the target at τl. For stochastic
display, this is mathematically:

min
ϕ

∫
m
∥P{M{ϕ},xm}(τl)− Itarget∥2 · pm(m) dm. (16)

This can be viewed as a motion-aware analogue of con-
ventional joint time-multiplexing, where all SLM frames
reproducing a single macro-frame are optimized together.

High-speed regularization can be applied with a slightly
different approach that minimizes latency. Consider the case
where target frames arrive at the same framerate as the SLM,
i.e., τstep = τSLM. In this setting, as the display system steps
through each SLM pattern one at a time, a new desired
perceptual target is also made available on-the-fly for each
individual frame. Therefore, to minimize latency, the display
system must optimize the current SLM pattern such that the
current image perceived from the SLM matches the current
desired perceived image. For pattern i, the stochastic display
case therefore minimizes:

Lseq.(ϕ[i], ϕh, VHS) =

∫
m
∥P{M{ϕh ⊕ ϕ[i]},xm}(ti)

−P{VHS,xm}(ti)∥2 · pm(m, ti) dm,
(17)

where ϕh denotes a history of past SLM frames, and ⊕
denotes concatenation. In other words, we sequentially
optimize and display fast SLM patterns one at a time to
match the concurrent desired content, while keeping track
of previous patterns. See supplement for pseudocode.

5 EXPERIMENTS

We use a Texas Instruments DLP6750Q1EVM for our fast
SLM, with 1358 × 800 pixels with 10.8µm pitch and 4-
bit phase modulation at a maximum framerate of 1440Hz.
Our laser is a 520 nm FISBA READYBeam. To highlight
differences in speckle, color results are synthesized with
this wavelength. We also use a 4F system with an aperture
to block the DC component and higher-order diffraction.
Output focal stacks are produced from 10mm to 20mm
from the SLM, matching a 45◦ FOV where virtual content
is placed from 0 to 4 diopters away from the viewer. To
calibrate our real system, we use Adam [57] to learn a
forward model that captures SLM and optical non-idealities.
To solve the optimization problems from Section 3, we use
Adam [57] with soft rounding to model SLM quantization,
with 500 iterations unless otherwise noted. Please refer to
the supplement for more details.

We assume a 16.66ms persistence-of-vision time, cor-
responding to NTM = 24 SLM patterns at 1440Hz. For
simplicity, we assume a rectangular kernel k(t) = 1, 0 ≤ t ≤
16.66ms in Equation (12). To test our stochastic and kernel-
based approaches, we calculate Farneback optical flow [58]
on the target videos, which we then histogram to estimate
a distribution of scene and therefore eye motion. Please see
the supplement for more discussion.

To simulate what a person would perceive in the real
system, we capture focal stacks via a FLIR BFS-U3-123S6M-
C sensor mounted on a translation stage. To model eye
motion, we eschew mechanically rotating the camera, and
instead digitally shift and sum captured images to avoid
any problems with étendue.

5.1 Results

5.1.1 Methods

We compare the following methods:

• Conventional joint time-multiplexing. The baseline method.
Every sequential non-overlapping set of NTM frames is
used to reproduce a different target frame (Equation (3)).

• Independent high-speed display (ours). From Equation (11),
every high-speed SLM frame is used to reproduce the
concurrent moving target scene.

• Motion-aware high-speed display (ours). We solve Equa-
tion (13) with estimates of eye motion. We test without
high-speed regularization (τstep = NTMτSLM) and with
high-speed regularization (τstep = τSLM).

• Stochastic motion-aware high-speed display (ours). We solve
Equation (14) with an eye-motion distribution from opti-
cal flow, with and without high-speed regularization.

• Kernel-based motion-aware high-speed display (ours). We solve
Equation (15) with the same motion distribution from
above, with and without high-speed regularization.

All motion-aware approaches are solved using the sequen-
tial methodology from Section 4.2.

To visualize the results, we take the output SLM frames
and render estimated perceived images via Equation (12).
To highlight stroboscopic effects, we render at timestamps
halfway between regularized ones (Figure 3). The figures
show both insets for qualitative evaluation as well as PSNR.
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Eye tracks plane:

Expected

Without high-speed regularization:
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(a) Traditional joint (b) Motion-aware
(est. track. bird)

(c) Motion-aware
(est. track. plane) (d) Stochastic (e) Kernel

With high-speed regularization:
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25.09dB 32.01dB 27.37dB 28.15dB 28.57dB
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k.
pl

an
e

23.13dB 24.77dB 30.16dB 27.35dB 27.18dB

(f) Independent (g) Motion-aware
(est. track. bird)

(h) Motion-aware
(est. track. plane) (i) Stochastic (j) Kernel

Fig. 4. Tackling sample-and-hold blur (simulation). A traditional time-multiplexing approach results in a blurry moving bird and plane, as well as
increased speckle (a). Independent high-speed display (f) cleans up these artifacts, but results in loss of contrast while retaining speckle noise.
A motion-aware approach optimized for a particular eye motion can mitigate these effects, but suffers a performance hit when the eye moves
differently than expected (b), (c), (g), (h). Using models that account for uncertainty can compensate for these effects (d), (e), (i), (j). Adding high-
speed regularization reduces visible speckle (g), (h), (i), (j).

5.1.2 Scenes
We built four representative scenes to test these methods:
• Skyline. A generic dynamic scene, where a bird flies to

the right as a plane flies to the left. A high-contrast city
background makes joint optimization important. Shown
in Figures 4, 5 and 7.

• Basketball. A video meant to represent an AR/VR basket-
ball game, where a ball flies up and to the right towards a
static hoop as a blocking arm falls. Shown in Figure 6.

• Highway. A scenario with world-locked content, where
a user turns their head relative to a road sign, concrete
barrier and hilly backdrop. Shown in Figures 1 and 8.

• Jungle. A scene with more complex motion, where a leap-
ing tiger and a landing bird produce more complicated,
nonlinear trajectories over a forest background. Shown in
the supplement.

5.1.3 Discussion
In Figures 4, 6(i) and 7(i), we examine scenarios where the
user’s eye tracks moving objects. A standard joint time-
multiplexing approach produces speckled, blurry images
where the fine details cannot be resolved thanks to sample-
and-hold blur. An independent high-speed display ap-
proach mitigates these blurring effects, but remains speckled
while losing overall image contrast. Our motion-aware ap-
proach can dramatically improve quality, but performance

drops if the eye moves unexpectedly. Without high-speed
regularization, artifacts again manifest in the form of mo-
tion blur, while with high-speed regularization, slight halos
appear near dark regions. Our stochastic approach mitigates
these challenges, balancing performance over all potential
eye motions with somewhat less speckle in the high-speed
regularization case. Our kernel-based method mostly be-
haves similarly to the stochastic approach with high-speed
regularization, but can manifest sharp halo artifacts without.

In Figures 5, 6(ii), and 7(ii), we examine stroboscopic
artifacts that appear in traditional systems when eye motion
does not match an object’s motion. All approaches that do
not use high-speed regularization result in ghosting arti-
facts. In contrast, using high-speed regularization instead
produces correct motion blur. Our motion-aware method-
ologies improve the contrast and speckle of this blur over an
independent approach. Figure 8 evaluates our framework
with only high-speed regularization and without motion-
aware optimization. Increasing the rate of regularization
reduces strobing to natural motion blur as shown in the text
on the highway sign, but can decrease contrast. Using the
full model with motion-aware optimization produces the
best results.

Figure 7 evaluates our framework in the context of
decreased compute. Performance follows the same trends as
the previous examples. The stochastic method is somewhat
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(f) Independent (g) Motion-aware
(est. track. bird)

(h) Motion-aware
(est. track. plane) (i) Stochastic (j) Kernel

Fig. 5. Tackling stroboscopic effects (simulation). Traditional joint time-multiplexing results in strobing artifacts when object motion does not
match eye motion, as can be seen in the repeated bird eye and plane windows (a). When used without high-speed regularization, our motion-aware
framework results in similar ghosting (b), (c), (d), (e) — for instance, (b) is optimized for the eye tracking the bird, and thus results in strobing
artifacts around the plane. By regularizing display outputs at high-speeds, these effects instead gracefully degrade into motion blur (f), (g), (h), (i),
(j). Motion-aware optimization ensures that outputs are high contrast and speckle free (g), (h), (i), (j).

blurrier and contains more halos than the kernel-based
approach as expected from Section 4.1.

For space reasons, Figures 6 and 7 contain abridged
results. Please refer to the supplement for full versions, as
well as evaluation on our Jungle scene with more com-
plex motion trajectories, comparisons between sequential
(Section 4.2) and full optimization, simulations on a binary
SLM, experiments with different SLM framerates, and slow
motion video visualizations.

5.1.4 Quantitative perceptual evaluation

To quantitatively evaluate the real perceptual quality of our
methods, for each of our test scenes, we estimated possible
eye trajectories according to the dominant object motion —
the bird, plane and city motion in the Skyline scene, the
ball, arm and hoop motion in the Basketball scene, the road
sign, barrier and mountain motion in the Highway scene,
and the tiger, bird and tree motion in the Jungle scene. With
these trajectories and the associated scenes, we then ran
our methods and estimated high-speed videos of perceived
content via Equation (12) — to best capture the full gamut
of potential visual effects, we render perceived output at the
1440Hz framerate of the SLM. We then ran the state-of-the-
art VR video metric FovVideoVDP [50] on this dataset of
perceived videos.

As shown in Table 1, this metric yields similar conclu-
sions to the previous qualitative discussion. A motion-aware
method with correctly-estimated eye motion performs best,
but performance decreases when the estimation is incorrect.
Our stochastic and kernel-based approaches provide a mid-
dle ground. However, note that FovVideoVDP is designed
for standard low-framerate content, and thus these numbers
should be interpreted with caution (we are not aware of any
perceptual video metrics for high-framerate content).

Method FovVideoVDP (↑)

Without HSR

Traditional joint 4.12
Mtn.-aware (correct est.) 3.92

Mtn.-aware (incorrect est.) 3.13
Stochastic 4.30

Kernel-based 3.41

With HSR

Independent 5.10
Mtn.-aware (correct est.) 6.84

Mtn.-aware (incorrect est.) 5.32
Stochastic 6.10

Kernel-based 5.99

TABLE 1
Quantitative perceptual evaluation. We compute the average

perceptual quality from FovVideoVDP [50] over the scenes shown in
this paper, higher values are better. Using high-speed regularization

(HSR) with correctly-estimated eye motion performs the best, but
unexpected eye motion reduces performance. Our stochastic and

kernel-based methods provide an alternative.
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(ii) Eye does not match object motion:

Tr
ac

k.
ha

nd

23.64dB 24.10dB 24.96dB 24.58dB

Tr
ac

k.
ba

ll
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Expected (e) Traditional joint (f) Stochastic (LSR) (g) Independent (h) Stochastic (HSR)

Fig. 6. Results in a real system (abridged). When the eye follows object motion (i), a traditional time-multiplexing approach results a blurry ball and
hand, as well as increased speckle (a). Independent high-speed display (c) cleans up these artifacts, but results in loss of contrast while retaining
speckle noise. Using motion-aware models that account for uncertainty can compensate for these effects (b), (d). Using high-speed regularization
(HSR) reduces visible speckle (d) compared to without (LSR) (b). When the eye does not follow object motion (ii), traditional multiplexing (e) along
with LSR (f) results in ghosting artifacts. Independent high-speed display produces natural motion blur (g), but reduced contrast. Our motion-aware
model with HSR (h) mitigates these effects. To simplify calibration, the color results here are synthesized from captures at a single wavelength.

6 LIMITATIONS

Our high-speed regularization requires high-speed input
content, which may not be directly available. However, vir-
tual content could be readily rendered at higher rates, albeit
with larger noise tolerances to avoid increasing overall com-
putation. Alternatively, video interpolation could be used
to synthesize high-speed content from low-speed input, e.g.
RIFE [59] or FFMPEG’s minterpolate. For AR/VR world-
locked content, affine transforms estimated from IMU data
could be used to approximate high-speed frame changes
akin to timewarp [60]. Given that many modern off-the-
shelf displays already leverage motion interpolation to tem-
porally upsample slow video content, we believe this is not
a significant barrier to real-world use.

If eye tracking is not available, our proposed approach
in Section 4.1 requires estimates of scene motion, which
could add computational cost. But, if high-speed content is
synthesized from low-speed input, the flow estimates that
most motion-interpolation methods use could be reapplied.
For rendered scenes, motion could be provided as part of the
scene metadata. Our high-speed regularization also requires
maintaining a history of NPOV previously displayed frames,
resulting in increased memory usage over independent dis-
play. However, if the eye’s temporal persistence-of-vision
is instead approximated with an exponential distribution, a
single entry with an appropriate update rule would suffice.

7 CONCLUSION AND FUTURE WORK

In this work, we propose a paradigm of high-speed dis-
play on time-multiplexed holographic displays. Instead of
repeatedly multiplexing the same static image, such systems
can instead show unique, distinct content per frame. By
modeling such a display with persistence-of-vision and eye
motion, we can mitigate the sample-and-hold blur as well
as stroboscopic artifacts of time-multiplexed holographic
displays, while preserving contrast and reducing speckle.
We test our approach in simulation and a real system.

Our current framework uses fairly simple perceptual
models to represent human vision. More sophisticated mod-
els that account for foveation and other human visual effects
could further improve visual quality [3], [4], [50]. During
eye rotation, motion in the eye pupil may also need to be
properly modeled following recent work in holographic dis-
plays [61], [62], [63], beyond just simple retinal translation.

Our methodology could potentially be applied to other
variants of holographic systems. For instance, time mul-
tiplexing is often used in holographic displays beyond
speckle reduction in tasks like color display [64] or eyebox
expansion [65], and could produce related motion arti-
facts in these contexts. Beyond holographic displays, our
framework could also be applied to other time-multiplexed
displays such as DMD-based displays. The motion blur and
stroboscopic effects we tackle in this work are ubiquitous.
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Without high-speed regularization:

19.15dB 18.46dB 19.15dB 16.80dB 19.29dB 18.52dB 19.23dB 18.40dB 19.47dB 18.60dB

(a) Traditional joint (b) Motion-aware
(est. track. bird)

(c) Motion-aware
(est. track. plane) (d) Stochastic (e) Kernel

With high-speed regularization:

18.13dB 17.33dB 21.80dB 19.51dB 20.96dB 20.50dB 21.09dB 20.01dB 21.52dB 20.36dB

(f) Independent (g) Motion-aware
(est. track. bird)

(h) Motion-aware
(est. track. plane) (j) Stochastic (k) Kernel︸ ︷︷ ︸

(i) Eye matches object motion

Expected

Without high-speed regularization:

19.25dB 18.54dB 18.82dB 17.80dB 19.46dB 18.64dB 19.31dB 18.54dB 19.46dB 18.80dB

(a) Traditional joint (b) Motion-aware
(est. track. bird)

(c) Motion-aware
(est. track. plane) (d) Stochastic (e) Kernel

With high-speed regularization:

18.13dB 17.47dB 20.88dB 20.73dB 21.62dB 20.07dB 21.18dB 20.13dB 21.68dB 20.45dB

(f) Independent (g) Motion-aware
(est. track. bird)

(h) Motion-aware
(est. track. plane) (j) Stochastic (k) Kernel︸ ︷︷ ︸

(ii) Eye does not match object motion

Fig. 7. Low compute visualization (simulation, abridged). We apply our methodology to the same simulated scene as Figure 4 and Figure 5,
but with just 4 iterations of gradient descent instead of 500. Our proposed framework is again able to mitigate sample-and-hold blur as well as
strobing effects. Unlike higher-compute settings, the kernel-based approach slightly outperforms the stochastic approach, as insufficient iterations
are performed to cover the entire space of possible motions under the stochastic methodology.
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Expected (a) Traditional joint
(τstep = NTMτSLM)

(b) Ours
(τstep = 0.5NPOVτSLM)

(c) Ours
(τstep = τSLM)

(d) Ours + motion-aware
(τstep = τSLM, stochastic)

Fig. 8. With high-speed regularization, without motion-aware optimization (simulation). In this figure, we experiment with our framework with
just high-speed regularization without motion-aware optimization, i.e., assuming the eye is static. As shown by (a), (b) and (c), increasing the
rate of regularization by decreasing τstep turns stroboscopic effects into natural motion blur, but contrast slightly decreases. Simultaneously, higher
regularization speeds sharpen perceived details when the eye does match object motion. Incorporating motion-aware optimization provides the
best results (d).
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