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Supplemental Material for Holospeed:
High-Speed Holographic Displays for Dynamic

Content

✦

References to the main paper are denoted in red. In
Section 1, we briefly provide details on our visualization
website. Section 2 summarizes the additional results shown
in this document. In Section 3, we add more discussion of
our stochastic and kernel approaches for motion-aware opti-
mization. In Section 4, we add more detail on our sequential
approach for on-the-fly motion-aware high-speed displays.
In Section 5, we describe a preblurring approach for miti-
gating stroboscopic artifacts. In Section 6, we describe our
holographic system model, and how we calibrate it. In
Section 7, we discuss how we use optical flow calculations
to build a distribution of eye motion. Finally, in Section 8 we
provide details on the 3D models used in this work.

1 VISUALIZATION WEBSITE

In site_vis, we share a local website for visualizing slow
motion videos of perceived content from our frameworks.
Please open site_vis/index.html in your browser with
Javascript enabled.

2 MORE COMPARISONS

In Figure 1, we show a comparison of the sequential ap-
proach described in Section 4.2 with a direct optimization of
Equation 13. In our results, performance is similar between
them, justifying our use of a sequential approach. We com-
pare them further in Section 4.

In Figure 4, we evaluate our approach on a scene with
more complex motion trajectories, where a leaping tiger and
a landing bird provide more complicated object dynamics.
Our proposed motion-aware modeling and high-speed reg-
ularization together provide the best results again.

In Figure 5, we demonstrate our framework applied to
a binary SLM with the same resolution and framerate as
our original SLM, along with a single sideband mask. Us-
ing high-speed regularization outperforms not using high-
speed regularization by a larger factor than on a higher bit-
depth SLM — we attribute this to challenges in convergence
with the highly-quantized binary SLM.

In Figure 6, we evaluate our proposed methodologies
over a spectrum of different SLM framerates. Motion ar-
tifacts continue to appear at lower framerates, which are
mitigated by our proposed motion-aware approaches with
high-speed regularization.

In Figures 8 and 9, we show full versions of Figures 6
and 7 from the main paper, respectively.

3 MORE DISCUSSION ON STOCHASTIC VS KERNEL
METHODS

Aside the improvement under low-compute settings (Fig-
ure 9), there are certain computational arguments for the
kernel-based approach. For one, the stochastic approach re-
quires recomputing the perceived target for every iteration,
as the selected motion is different per iteration. In contrast,
the ”perceived target” under the kernel-based approach
can be precomputed a single time and used for the entire
optimization. A very similar notion also yields benefits in
the sequential setting. Under the stochastic approach, the
perceptual contribution from previous SLM patterns must
be recomputed for every potential motion and iteration.
Conversely, under the kernel approach, the previous percep-
tual contribution can be simply computed once and reused.

On the other hand, the kernel-based approach requires
convolution operations, adding overhead over the simple
shift-and-add required by the stochastic approach. One
potential speed-up is to approximate the kernel with a
separable version, at the cost of some visual quality —
instead of performing a full 3D convolution, perform the
2D spatial convolutions as separate 1D convolutions in x
and y, and then aggregate in time. If scene motion is mostly
along a single axis such as a cervical rotation of the head
in AR/VR, such a simplification may be more exact — see
Figure 2.

4 MORE DISCUSSION FOR ON-THE-FLY MOTION-
AWARE HIGH-SPEED DISPLAYS

In Algorithm 1, we provide pseudocode for the sequential
algorithm for stochastic high-speed displays. If eye tracking
information is available, a history of previous eye motions
would also need to be kept. Note that only information from
the last duration of persistence-of-vision NPOVτSLM needs
to be maintained, imposing an upper bound on potential
additional memory usage.

We also note that our sequential approach theoretically
results in less overall computational expense that a full solve
of Equation 13. To put it briefly, our method only considers
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Fig. 1. Comparing sequential solve with full solution (simulation). Performance is for the most part similar between our sequential methodology
given in Section 4.2 and a full joint optimization over all to-be-displayed frames.

one perceived image per SLM pattern like a traditional time-
multiplexed display, while a full solve would consider all
perceived images that depend on that pattern. Given that
performance between them is similar as shown in Figure 1,
our sequential algorithm may be a reasonable choice even
outside the on-the-fly context.

Algorithm 1 Sequential high-speed display
Require: NSLM > 0→Maximum number of frames
Require: getFrame[i]→ Returns scene at time iτSLM
Require: Display(ϕ[i])→ Displays SLM frame ϕ[i]
i← 0
VHS ← []
ϕhist. ← []
while iτSLM < τduration do

VHS.append(getFrame[i])
ϕ[i]← argminϕ[i] Lseq.(ϕ[i], ϕhist., VHS)
Display(ϕ[i])
ϕhist.append(ϕ[i])
i← i+ 1

end while

5 PREBLURRING CONTENT

Instead of using high-speed regularization, an alternative
solution for remedying stroboscopic effects is preblurring
target content according to expected object and eye motion.
Mathematically, such an approach can be seen as replacing
Itarget in Equation 16 with P{VHS,m}(τl). We visualize

results of such an approach for our stochastic approach in
Figure 7. Using this technique produces a slight increase
in contrast relative to high-speed regularization, and most
stroboscopic effects are avoided. However, thanks to the
underlying low rate of regularization, various visual in-
accuracies can still be produced. For one, at timestamps
between regularized ones, more motion blur than necessary
will be produced, as part of the frames will replicate the
contribution of future content due to Equation 10. Further-
more, since the output perceived content is unregularized
at these timestamps, we found that unwanted behavior can
manifest, like the spurious high frequencies in the motion-
blurred plane windows in Figure 7(b). Finally, since motion-
blur is in essence artificially produced, this approach can
also be more sensitive to error or latency in eye motion
estimation, relative to high-speed regularization [1].

6 HOLOGRAPHIC SYSTEM MODEL

In Figure 3, we show a system diagram for our prototype
holographic display. As described in the main paper, we
use a 4F system with a mask at the Fourier plane to block
the DC component of the laser, and a higher-order filter to
block any diffraction modes.

To model this system for our framework, we start by
using a multi-layer perceptron network N (ϕ) to model
the SLM’s phase curve, taking in an input phase value
and outputting a corrected one. Next, we model any non-
idealities in the incident laser illumination as well as any
SLM non-uniformities with a complex modulationMsource.
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Fig. 2. A separable kernel (simulation). For certain scenes where motion happens primarily along a single axis, a separable approximation may
be sufficient for our kernel approach. Here, we show an example with world-locked content, where objects predominantly move in the same direction
as the user moves. The separable version (c), (f) produces very similar solutions to the original (b), (e). Here, motion occurs predominantly along
the x-axis, so we compute our 1D filters by summing the estimated flow distribution along x and y. Other axes could be handled by rotating the
images, at some compute cost.
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Fig. 3. System diagram for our holographic display. Beyond a base-
line holographic display architecture, we include an additional 4F system
with a DC block and higher-order filter, with appropriate beamsplitters to
help route light.

After, we apply a spatially varying convolution C(·) to han-
dle any generic optical non-idealities, such as an imperfect
4F system. We then use an angular-spectrum (ASM) propa-
gation [2] to propagate the wavefront from the SLM to the
sensor plane PASM(·). We also add a learnable convolution
Maper. to represent the higher-order filter and DC block. To
model any undiffracted laser light, we add an additional
complex term Aundiff., as well as Iambient for any ambient in-
coherent light. We add an additional non-negative real mask
Msensor to model any vignetting on the camera. In whole, our
model can be expressed mathematically as follows:

Imodel = Msensor · (|Maper. ∗ PASM (C (Msource · N (ϕ)))

+Aundiff.|2 + Iambient)
(1)

In practice, C(·) is implemented using regions that overlap
by 20%, and small 5×5 pixel kernels. To avoid local minima,
Msource,Maper., Aundiff. and Iambient are all represented with

lower resolution maps that have 0.25 times the resolution of
the SLM, and are upsampled using bilinear interpolation as
needed.

To calibrate these parameters, we calculated phase pat-
terns that produce images from a natural image dataset
using a baseline version of the model with just ASM prop-
agation. We then displayed these patterns to capture pairs
of phase patterns and output images. We then ran Adam [3]
over this dataset to optimize all of the above parameters.
To properly map captured images to simulated outputs, we
also capture sequences of Gray codes to estimate an initial
homography, on top of which we apply differentiable thin-
plate splines [4], [5] for more accurate warping.

In practice, fast SLMs have reduced bit depth, which can
potentially cause reduced quality if not properly accounted
for during phase retrieval [6], [7]. To tackle this, we adopt an
approach where the forward pass is computed with quanti-
zation while backwards gradients are computed assuming a
differentiable version — we use the soft rounding function
from Agustsson et al. [8], which uses a hyperparameter α to
control the strength of the rounding. We gradually increase
α over the phase retrieval process.

7 ESTIMATING AN EYE MOTION DISTRIBUTION US-
ING OPTICAL FLOW

To avoid eye tracking as described in Section 4.1, optical
flow can be utilized to estimate a distribution of eye motion,
assuming that the eye will be tracking a scene object. In
our work, for simplicity we use Farneback optical flow to
estimate scene motion [9], but any modern flow estimation
algorithm, e.g. RAFT [10] could be used.

Without high-speed regularization, we compute optical
flow between our current and previous low-speed target.
Then, we have a flow vector for every pixel in the image —
we build a 2D histogram of these flow vectors. We then use
this histogram for the probability distribution described in
Section 4.1. For simplicity, we discretize our estimated flow
to pixel units.

With high-speed regularization, we look at the previous
NPOV target frames, and estimate optical flow between
every sequential frame. We build a 2D histogram per pair,
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which we then average to estimate an overall eye motion
distribution. We then proceed as in the previous case.

8 SCENE MODEL SOURCES

• Highway scene:
– Road sign courtesy of KaramellGlass on SketchFab.

Licensed under CC BY 4.0.
• Basketball scene:

– Basketball courtesy of afurokn on SketchFab. Li-
censed under CC BY 4.0.

– Basketball hoop courtesy of paethon on SketchFab.
Licensed under CC BY 4.0.

– Arm courtesy of Just8 on SketchFab. Licensed under
CC BY 4.0.

• Skyline scene:
– Bird courtesy of Oregon State University on Sketch-

Fab. Licensed under CC BY 4.0.
– Plane courtesy of nikdox on cgtrader. Licensed under

cgtrader’s Royalty Free No AI License.
• Jungle scene:

– Tiger courtesy of Amil (francescolima74) on Sketch-
Fab. Licensed under CC BY 4.0.

– Bird courtesy of mr.film on SketchFab. Licensed un-
der CC BY 4.0.
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Fig. 4. More complex motion (simulation). Even with more complex object trajectories, our proposed methods still mitigate motion artifacts, by
using motion-aware modeling and higher-speed regularization.
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Fig. 5. Our framework with a binary SLM (simulation). We test our approach on a binary phase SLM with an additional single sideband mask
in the Fourier aperture. Our results mirror higher bit-depths, except our motion-aware approaches without high-speed regularization struggle to
resolve the bird eye.
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Fig. 6. Varying framerate of the SLM (simulation). We validate the effects of eye motion and dynamic motion for different SLM framerates. Using
a lower framerate results in less time multiplexing and more visible speckle, but still suffers from the same motion artifacts as higher framerates
unless a motion-aware approach is applied with high-speed regularization.
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Fig. 7. Preblurring (simulation). We test out a preblurring approach for stroboscopic minimization with our stochastic motion-aware approach.
While stroboscopic artifacts are minimized, visual inaccuracies can still be produced as shown by the high frequencies in the plane windows in (b),
thanks to the underlying low rate of regularization.
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Fig. 8. Results in a real system (full). Traditional time-multiplexing (a) fails to reproduce sharp images when the eye tracks a moving object,
or realistic blur when the eye doesn’t. Independent high-speed display (f) lacks these artifacts, but suffers from decreased contrast. Our motion-
aware optimization can remedy these effects, but without high-speed regularization results in (ii) strobing artifacts (b), (c), (d), (e). High-speed
regularization and our motion-aware optimization combined produces the best results (g), (h), (j), (k). Our stochastic and kernel approaches
mitigate uncertainty in potential eye motion (j), (k).
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(a) Traditional joint (b) Opt. bird mtn. (c) Opt. plane mtn. (d) Stochastic (e) Kernel
With high-speed regularization:
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(f) Independent (g) Opt. bird mtn. (h) Opt. plane mtn. (j) Stochastic (k) Kernel︸ ︷︷ ︸
(i) Eye matches object motion

Tracking plane:

Tracking bird:

Expected

Without high-speed regularization:
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e

19.25dB 18.82dB 19.46dB 19.31dB 19.46dB

Tr
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k.
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rd

18.54dB 17.80dB 18.64dB 18.54dB 18.80dB

(a) Traditional joint (b) Opt. bird mtn. (c) Opt. plane mtn. (d) Stochastic (e) Kernel
With high-speed regularization:
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rd
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(f) Independent (g) Opt. bird mtn. (h) Opt. plane mtn. (j) Stochastic (k) Kernel︸ ︷︷ ︸
(ii) Eye does not match object motion

Fig. 9. Low compute visualization (simulation, full). We test our approach with just 4 iterations of gradient descent instead of 500. Our proposed
framework is again able to mitigate sample-and-hold blur as well as strobing effects. Unlike higher-compute settings, the kernel-based approach
slightly outperforms the stochastic approach, as insufficient iterations are performed to cover the entire space of possible motions under the
stochastic methodology.
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